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One-Shot Real-to-Sim via End-to-End Differentiable Simulation and Rendering

Yifan Zhu', Tianyi Xiang', Aaron M. Dollar!, and Zherong Pan?

Abstract—Identifying predictive world models for robots from
sparse online observations is essential for robot task planning and
execution in novel environments. However, existing methods that
leverage differentiable programming to identify world models
are incapable of jointly optimizing the geometry, appearance,
and physical properties of the scene. In this work, we intro-
duce a novel rigid object representation that allows the joint
identification of these properties. Our method employs a novel
differentiable point-based geometry representation coupled with
a grid-based appearance field, which allows differentiable object
collision detection and rendering. Combined with a differentiable
physical simulator, we achieve end-to-end optimization of world
models or rigid objects, given the sparse visual and tactile obser-
vations of a physical motion sequence. Through a series of world
model identification tasks in simulated and real environments, we
show that our method can learn both simulation- and rendering-
ready rigid world models from only one robot action sequence.
The code and additional videos are available at our project
website: https://tianyi20.github.io/rigid-world-model.github.io/.

I. INTRODUCTION

An accurate internal model of a robot about how its actions
can affect the surrounding environment is essential for robot
planning and control. Such a model, which we refer to as a
world model, needs to render realistic raw observations such as
RGB images from arbitrary viewpoints and predict consistent
and accurate physical interactions. However, constructing such
a model from raw observations in novel real-world environ-
ments remains challenging as it requires the identification of
the geometry parameters that describe the shape of all objects
(e.g. vertices and faces of a mesh), appearance parameters
that define how the objects look when rendered (e.g. color and
reflectance), and physical parameters (e.g. mass) of the objects
in the scene. These parameters are usually partially observable,
and robots are typically limited in time and computational
resources.

Recently, there has been growing interest in learning world
models from large offline datasets of action-labeled videos
using generative modeling techniques [1], [2], [3], [4]. How-
ever, these black-box models are susceptible to distribution
shifts and cannot infer properties such as the coefficient of
friction. In addition, they are not physically consistent and
cannot provide physical information such as contact forces,
which are essential for downstream tasks. Meanwhile, an
alternative approach that identifies the geometry, appearance,
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Fig. 1. From the visual and tactile observations of a single robot push (top),
our method jointly optimizes the shape, appearance, and physical parameters
of a world model consisting of rigid objects in the form of a rigid body
simulator (bottom, the robot arm is not rendered in this picture and the end-
effector is treated as a floating blue sphere robot).

and physical parameters (GAP) of the environment with strong
priors coming from knowledge of physics can result in a
generalizable and physically consistent world model.

Many existing works employ differentiable simulators as
strong physics priors that allow efficient identification of phys-
ical parameters such as inertia and coefficient of friction [5],
[6], [7]. Differentiable simulators allow the gradient-based
optimization of mass-inertial properties and frictional coef-
ficients to match a physical motion sequence to sparse robot
observations. However, these works assume known geometries
and appearances of the objects in the scene and do not allow
the algorithm to adapt the GAP simultaneously.

On the other hand, we have witnessed recent advances in
learnable geometry and appearance models, such as Neural
Radiance Fields (NeRF) [8] and Gaussian Splatting (GS) [9].
These methods build the rendering equation into a learnable
representation to enable the identification of geometries and
appearances from raw observations. However, rigid body sim-
ulators [10] typically require the use of volumetric representa-
tions with a clear definition of object surfaces such as convex
hulls to detect collisions and penetration depths. Unfortunately,
NeRF and GS are incompatible with the requirements of
rigid body simulators since NeRF represents objects with a
continuous neural field and GS with individual 3D Gaussians.
To the best of the authors’ knowledge, no existing method
allows the simultaneous identification of the GAP properties of
a world model of rigid objects from sparse robot observations.

To address these challenges, this work presents a rigid object
representation that is compatible with general-purpose rigid
body simulators and allows the joint optimization of GAP. As
shown in Fig. 1, based on this representation, our work enables
the identification of a rigid world model in the form of a
full-fledged rigid body simulator from the observations of one
robot push. Our proposed representation is the combination of



a recently proposed point-based shape representation Shape-
as-Points (SaP) [11] and a grid-based appearance field. SaP
parameterizes an object’s geometry and topology using a
set of surface points along with normal directions. It then
uses differentiable Poisson reconstruction to recover a smooth
indicator field of object occupancy, which can be converted to
a mesh using a differentiable marching cubes algorithm [12].
The texture of the vertices of the mesh is then obtained by
interpolating the appearance grid. Employing the mesh in a
differentiable rigid body simulator [13] that provides gradients
for the physical parameters and contact points of the objects,
our method constructs a fully differentiable pipeline for jointly
optimizing the GAP. Our contributions are:

« A jointly differentiable representation of the shape, ap-
pearance, and physical properties of rigid objects.

o An algorithm for identifying world models online from
sparse robot observations, which we refer to as real-
to-sim, with an end-to-end differentiable simulation and
rendering pipeline.

We evaluate our method on identification problems in both
simulated and real-world environments. The results show that
our method can infer accurate world models from a single
episode of robot interactions with the environment.

II. RELATED WORK

Our work is closely related to differentiable rigid body
simulators, learnable geometry and appearance models, and
identifying world models, and we review these areas of study
in this section.

A. Differentiable Rigid Body Simulator

Rigid body simulators are essential tools in robotics and
engineering for testing, verification, perception, control, and
planning. Traditional rigid body simulators are not differen-
tiable, but there have been many recently proposed differen-
tiable rigid body simulators [13], [14], [15], [16], [17], [18] for
facilitating downstream system identification, robot planning,
and policy optimization tasks. Different strategies are adopted
to enable the calculation of gradients for the underlying non-
differentiable contact dynamics, including employing a smooth
contact model [18], [15], [16], using sub-gradients of the
linear complementarity problem [14], and implicit gradients
of nonlinear optimization [13], [17]. However, most of these
methods do not provide gradients with respect to the geometry,
with the exception of [17], [13], [15]. In this work, we adopt
the simulator proposed by Strecke et al. [13] for its physical
realism, numerical stability, and fast computation from GPU
acceleration.

B. Learnable Geometry and Appearance Models

Learning 3D geometry and appearance models from 2D
raw images is vital to robots’ understanding of the physical
world. Earlier research has focused on learning only the 3D ge-
ometries without appearance, including point-cloud-based [19]
models, convex-hull-based [20] models, and learning implicit
signed distance functions [21]. Neural radiance fields (NeRF)
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is the first method that enables a continuously learnable model
for the full 3D appearance of objects and scenes, which
uses neural networks to parameterize the spatial appearance
properties and implicitly learn the 3D geometry. More recently,
Kerbl et al. proposed Gaussian Splatting (GS) [9], a non-
parametric method that represents the appearance of the scene
with 3D Gaussians and significantly improves the training
and rendering speeds due to their fit for fast GPU/CUDA-
based rasterization. These algorithms are capable of learning
detailed 3D object and scene appearances from sparse image-
based observations. However, NeRF and GS lack a clear
definition of rigid object surfaces as NeRF represents objects
with a neural field and GS with individual 3D Gaussians.
Therefore, while there are some initial attempts at integrating
them with rigid body simulators [22], [23], research for robust,
physically correct, and differentiable collision detections with
these models is still ongoing. In addition, NeRF and GS
require many diverse views of an object, which is unrealistic
in typical robotic manipulation applications.

Compared to standard 3D representations such as point
clouds, which do not allow volumetric collision detection, or
meshes, which do not allow large geometric and topological
changes during optimization, our SaP-based methods enjoy the
best of both worlds. Combined with a differentiable renderer,
our object representation then achieves end-to-end image-
based shape optimization.

C. World Models

Traditional system identification methods [24] identify only
the dynamics parameters from full state information. However,
to support diverse downstream robot tasks in the real world,
world models need to be built from raw observations and
support both accurate dynamics prediction and photorealistic
novel view synthesis. While existing works have identified
world models from raw image observations using differen-
tiable simulators [17], [13], [15], none supports simultaneous
optimization of GAP. Another line of work closely related to
ours is image-based generative world modeling. These works
aim to predict the next RGB frame based on the current
frame and action. These models are learned by training on
diverse datasets with generative modeling techniques such as
variational autoencoders [1], [2] and diffusion [3], [4]. The key
differences between our method and these works are that our
simulation, grounded in physics, is always physically consis-
tent and is a general-purpose rigid simulator that can provide
physical information such as contact forces. Purely data-driven
world models generalize poorly to novel scenarios and their
lack of physical information severely limits their application to
downstream robot tasks. Finally, a recent work [25] proposed
a method to use Gaussian Splatting along with a particle-based
simulator to track and reconstruct a moving scene. Instead of
identifying the physical parameters of the scene, the method
optimizes virtual forces attached to each particle such that
they match the observed object trajectory. Therefore, although
the method can be used as a world model for prediction, the
accuracy is severely limited. We include this method as a
baseline in our experiments in Sec. V and demonstrate the
limitation of this method.
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Fig. 2. Overview of the proposed fully differentiable pipeline for world model identification from sparse robot observations. Our object representation couples
an oriented point cloud P and a 3D appearance grid 1. Through a differentiable Poisson solver and differentiable marching cubes, the oriented point cloud
is converted to an indicator grid x and then a mesh, whose vertex textures are interpolated from the appearance grid 1. Feeding the object mesh, physical
parameters M and p, the terrain point cloud P, and the robot pushing trajectory and control {ef,u®) into a differentiable rigid body simulator and renderer,
the predicted scenes can be rendered. Calculating the loss against observed RGB-D images, the scene shape, appearance, and physical parameters are jointly

optimized with gradient descent.

III. PROBLEM DEFINITION

In this section, we describe our formulation of world
model identification. We assume the environment consists of
a rigid object and rigid terrain, whose physical properties and
appearances are parameterized by 6. A robot, equipped with
joint encoders and end-effector force sensors, interacts with
the object at T' time instances: t1,---,tp, with a fixed time
step dt. At each time step, the robot observes its end-effector
pose e’ € SE(3) and contact force f! € R3. Further, the robot is
equipped with an RGB-D camera with known intrinsics that
observes the object through image of ¢ R”*W>4 at camera
pose ¢’ € SE(3). We further assume an image segmentation
mask m! € RT*W>4 is provided for the object, robot, and
terrain. Therefore, the robot observations are a sequence
O = {(t,e', ft,0',c',m')}, and our goal is to estimate 6 from
the set of sparse observations O. We formulate this problem
as a physics-constrained optimization by introducing a full-
fledged physics simulator function ¢**1, ¢ = g(¢*, 4%, u’,0)
that can differentiate through objects’ appearance, geometry,
and physical parameters. Here, ¢’ and ¢**! are the object and
robot end-effector poses and velocities at timestep ¢ and u’ is
the applied robot force at the end-effector, which is equal in
magnitude to the sensed contact force but opposite in direction.

Given such a simulator, the world model identification
problem is formulated as solving the following optimization:

tr
argmin L(6'(4"(0),6),0"
0 t=Zt:1 ( ( ) ) (D
s.t. qi+17qi+1 :g(qi7qiaui?0) Vi = 1)"'3T_ 1.

The optimization is solved over a physical motion sequence
of T timesteps, with the objective function £ encourages the
simulated observation 6'(g'(6),6) to match the ground-truth
observation o.

IV. METHOD

In this section, we first detail the object representation,
which is key to our method. Then we describe the differ-
entiable simulator and details on solving the optimization
described in Eqn. .

A. Differentiable Object Representation

An ideal object representation for world model identification
needs to be flexible to allow learning of complex object
geometries, topologies, and appearance properties while being
compatible with rigid body simulators for collision detection.
Topology-agnostic geometries such as point clouds [19] and
GS [9] do not allow one to calculate the penetration depth
between bodies. On the other hand, meshes [15] do not allow
large geometric and topological changes.

We find that the SaP framework [1 1], when augmented by
additional appearance properties poses an ideal representation
for our purpose. Briefly, this framework represents the object
using a point cloud with normals on the object surface, denoted
as P = {(p e R n e R®)}. These normal directions induce a
discrete vector field v(z) = ¥, ,yep nl[z = p]. SaP then uses
Poisson reconstruction [26] to recover an underlying implicit
indicator field y(x) that describes the occupancy of the solid
geometry, i.e. whether z is inside or outside the geometry, and
matches its gradient field with v(z) by solving the variational
problem:

argmin [ [Vx(x) ~v(2)].
X Q

which amounts to solving the Poisson equation Ay = Vv. SaP
discretizes the indicator field y on a uniform grid domain 2,
which allows the efficient solution of x via GPU-accelerated
Fast Fourier Transform (FFT) with well-defined derivatives.
We use a 128 x 128 x 128 discretized grid x for all the
experiments in this paper.



The indicator field x is then transformed to a triangle
mesh M with a differentiable marching cubes algorithm [12].
Collision detection can then be easily achieved with standard
techniques for meshes. To enable appearance modeling, we
further augment with a grid of appearance properties, with
the same grid resolution as the one storing the indicator field
x. The appearance property is then propagated to the mesh
vertices via tri-linear interpolation. In this work, we only store
and render the color field, denoted as ), but other appearance
properties can be incorporated in the same manner as required
by more advanced differentiable rendering equations. The
mesh can then be rendered using any differentiable renderer
framework such as [27], [28], for which we use the open
source implementation in PyTorch3D [29]. Specifically, at
the time instance ¢, we invoke the renderer with the object
transformed to ¢’ and the camera transformed to c!. Our
parametrization of the object’s physics and appearance is
defined as:

9 2 <M(ql)7M,P,1/}>7

where the first two parameters are mass-inertial properties
and frictional coefficients, and the last two parameters are the
oriented point cloud for SaP and color field.

For the terrain, we simply use an oriented and colored point
cloud P; to represent the terrain as we do not need to simulate
interactions between 2 terrains. The terrain is rendered from
the colored point cloud with an alpha compositor [30] also
using the PyTorch3D library and we set the radius of each
point to be 0.015 m.

B. Differentiable Simulator

For our application, we only consider unconstrained rigid
body dynamics with dry frictional contacts. Note that addi-
tional physical constraints for describing objects such as soft
bodies and articulated objects can be potentially incorporated
into our framework and its differentiation has been well-
studied, e.g. in [16].

The governing equation of motion for rigid bodies and the
time discretization method are well-established, and we refer
the readers to Anitescu et al. [31] for details. The equation is
summarized as follows:

M(q")i' =C(q', ") + Ju' + T+t + Il )

with M (q") being the generalized mass matrix, C'(¢’, ") be-
ing the centrifugal, Coriolis, and gravitational force, J i, JJ [
being the Jacobian matrix for the external, normal, and tangent
contact forces at all the detected contact points, respectively.
Finally, TJ',T” are the contact forces. At each time step, a
mixed linear complementarity problem (LCP) is solved to
calculate the constraint forces 7+, 7!, yielding the final ac-
celeration ¢°, and we then integrate the configuration forward
in time [32], [33] as:

q’i+1 — qZ +q15t qi+1 — qZ +q'15t, (3)
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Fig. 3. The experiment setups for the simulation (left) and physical (right)
experiments. 9 objects are used for simulation with the PyBullet simulator,
including 8 YCB objects and a green box. For the real-world experiments,
three YCB objects (Drill, Mustard, and Sugar) are used. A URSe arm
equipped with a pusher and a ATI Gamma F/T sensor and an overhead
Realsense D435 RGB-D camera are used. Note that only the circled object
in the real-world setup is the object of interest and everything else is treated
as the static terrain.

with 0t being the timestep size. The mixed LCP problem is
formulated as:

o<7t 1L JT¢ >0
o<t Lxe+JITg* >0 (4)
0<A L1urt-el7l>o,

with e being the unit vector and p being the frictional
coefficient. \ is an auxiliary variable encoding the stick or
slip frictional state. To differentiate through the simulator,
we adopt the differentiation technique proposed by [14],
[13], where the result of the LCP is made differentiable by
solving with a primal-dual method and performing sensitivity
analysis at the solution to yield derivatives with respect to
the problem data. In this way, the derivatives propagate the
gradient information to the Jacobian matrix J* !, and finally
to the object geometric parameters P. In summary, Eqn. 2,3,4
defines our differentiable simulator function g. In particular,
we adopt the differentiable simulator proposed by Strecke et
al. [13] for its fast implementation on GPU.

C. World Model Identification

Even with our jointly differentiable physical and appearance
models, solving Eqn. | can still be rather challenging. This is
mainly because our initial guess can be very poor, especially
in the occluded region. As a result, the naive gradient descent
method can take many iterations and is prone to converging
to poor local minima. To mitigate this, we use two stages of
optimization, and we further leverage 3D foundation models
trained on web-scale data to generate reasonable initial guesses
of the rigid object in the scene from partial visual observations.

1) Two-stage Optimization: We note that while the ini-
tial guess can deviate significantly from our observations,
deviations in geometry and appearance can be largely
corrected by considering only the first observation, i.e.
(t1,e', f1r, 0" ¢ m't). Therefore, our first stage considers
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Fig. 4. The pushing trajectories used in the experiments. Left: The 8 starting
locations of the floating spherical robot pushing trajectories and 3 pushing
directions towards the robot at one of the starting locations for the Drill
object in the simulation experiments. Middle and right: the training trajectory
and 2 sample testing trajectories, with the first and last frames shown. [Best
viewed in color.]

only the first time instance and optimizes 6 using the following
loss:

L(6",0") =¢1 Lgn (6", 0™) + caLaepm (6", 0" )+
C3£pcd(0t1 ) 6) + C4£pen(9) + C5Lbalance(0)+
Cﬁﬁreg(97 90) + 7 Lsmooth (P)a

with (e1,...,c7) denoting weight terms. Here, 6'' is the
rendered RGB-D image at ¢;. L,g is a loss on the RGB
images, defined as a weighted sum of /; distance and D-
SSIM terms: Ly = (1 =X)L + ALssim, Where we set A = 0.2.
Lagepm is the [; distance on the depth images. When calculating
the three loss terms L1 ssiv,depin, the robot is masked out
according to the segmentation mask m'!. Lped 1s a unilateral
Chamfer distance between the point cloud generated from
the observed RGB-D image pixels belonging to the object
and the mesh vertices generated from P, which is defined
as the average of the minimum distance between each point
on the observed point cloud and any mesh vertex. The use
of a unilateral Chamfer distance as opposed to the regular
Chamfer distance is necessary since the observed object point
cloud only includes points on the object surfaces visible from
the camera viewpoint. The terms Lpe, and Lpalance €NCOUrage
the object to achieve static force equilibrium while having
no penetrations. L., penalizes the object mesh penetrations
in the terrain, and Logance = L7 |p5 — plt||1 is the sum of
the positional changes of the object from the initial position
p't over k steps by simulating forward with no robot actions.
In the case where the initial guess of the object geometry
does not come in contact with the terrain at ¢, Lyaance allows
the computation of the gradient information to expand the
geometry towards the terrain once the object falls due to
gravity and contacts the terrain during the k steps. We use
k = 3 for all the experiments in this paper. These two terms
provide a strong hint for the occluded part of the object. For
example, when an object is lying on the table, our RGB-D
observation will not cover the bottom of the object. However,
our model will guide SaP to fill the bottom-side geometries by
encouraging the object to settle on the table. Finally, the last
two terms regularize the object shape, where Ly, is the Lj
norm between the SaP points and the initial SaP points and
Lsmootn 1s the Laplacian smoothing objective on the object
mesh.

In addition, the use of both Lgepm and Lyeq is necessary.
When only Lgepm is used, if the estimated mesh is smaller than
the ground-truth object geometry, the predicted depth pixels
that are supposed to reach the ground-truth mesh do not hit

the estimated mesh, and there is no gradient information for
expanding the geometry. Similarly, Lycq does not inform the
SaP to not expand over the observed point cloud, and Lgepm
prevents the object geometries from occupying the supposed
background.

After the first stage, we have tuned our model to match
the first observation. When we move on to the second stage,
we incorporate all timesteps by applying the robot controls.
To make sure the geometry and appearance of the object
stay close to that in the first time step, we still use the loss
from the first stage on the first time frame, except for the
penetration and balance losses. For the rest of the time frames,
we use the loss £ = cgLpca + c9Lrobor, Where the first term
has the same definition as in the first stage and Lope 1S the
squared distance between the ground-truth and predicted robot
end-effector positions. To calculate this loss, we apply the
robot control forces from the initial state, integrate forward in
time, and render two intermediate and the last frames, instead
of every time frame for computational efficiency. During
our optimization, the chain of gradients is back-propagated
through the following recursive rule:

dL(o",0") oL . OL[dq" ¢ dg!

do 00 ogi|l oo agt de |

where the first two terms 9L£/30,0L/3q" is the derivatives of
the rendering equation, and the remaining terms in the bracket
are the derivatives of the simulator.

2) Geometry Prior: Our method relies on a reasonable
initial guess. Imagine the case with an object settling on the
edge of a table and the camera does not observe the contact
between the two. The initial guess of the occluded part of the
object could be very short and cause the object to directly fall
down without touching the table. This cannot be recovered
by our optimization since the object never hits the table and
there are no gradients for correcting the geometries. To obtain
a reasonable initial guess of the geometries and appearance
of the rigid object of interest from partial visual observations,
we take advantage of large reconstruction models [34] that
predict object 3D models from a single RGB image, trained
on web-scale data. In particular, we use TripoSR [35] in our
experiments with the segmented RGB image of the object
as the input image. Since the generated mesh is scale- and
transform-agnostic, we apply RANSAC and the scale-aware
iterative closest point algorithms with Open3D [36] to register
the mesh to the partial object point cloud, computed from the
RGB-D image at the first time instance.

Finally, in all the experiments of this work, we assume that
the occluded terrain by the object is flat, and complete the
terrain by fitting a plane of points, where the colors match
the nearest visible points of the terrain. In addition, in all
the experiments, we do not optimize the point cloud position
of the terrain and optimize only the colors. Although these
settings are simplifying, we believe a similar approach could
be adopted that predicts the geometry of the occluded rigid
terrain from a geometry prior model and optimizes for the
terrain geometry simultaneously, although more online data
may be required to resolve the ambiguities of the contacts
between two occluded geometries.




6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. APRIL, 2025

\

‘®

Fig. 5. The predicted and ground-truth poses of the 5 different objects at the end of sampled testing trajectories for the simulation experiments. After training,
the predicted poses are obtained by applying the control forces from the initial pose and integrating forward in time. The predicted object poses are highlighted
with a yellow silhouette and overlaid with the ground-truth object, blue floating spherical robot, and background. [Best viewed in color.]
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Fig. 6. The ground-truth (left) and predicted (right) RGB images of 3 novel views of the Drill in simulation. The optimized mesh shape and geometry
match the ground truth well, although lacking the fine details that can not be observed from the top view. The terrain checkers are not as sharp as the ground

truth due to the use of point rendering of the colored terrain point cloud.

| Dynamics Parameter Error |

Trajectory Prediction Error

Method ‘ mass (kg) o ‘ Unilateral Chamfer(mm) Pos.(mm) Rot.(°)  Trans. Vel. (m/s2)
Ours 0.0728 0.106 8.69 15.5 16.7 0.0351
PhysGS [25] 0.225 0.400 24.2 42.8 31.8 0.436
TABLET
AVERAGE DYNAMICS PARAMETER IDENTIFICATION AND NOVEL TRAJECTORY PREDICTION ERRORS FOR ALL OBJECTS IN THE SIMULATION
EXPERIMENTS

Fig. 7. Results of three example testing trajectory of the physical experiments.
The predicted object and robot poses with the optimized 6 highlighted with
a yellow silhouette are overlaid with the ground-truth object, robot, and
background. [Best viewed in color.]
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Fig. 8. The initial guess and optimized shape of the Box object in simulated
experiments and the Sugar object in physical experiments during stage 1.
The algorithm is able to correct the bulging on the underside of the Box that
would intersect the terrain. On the other hand, the initial mesh of Sugar is
too thin and does not touch the terrain. Our algorithm is able to optimize the
shape so that it satisfies physics constraints.

V. EXPERIMENTS AND RESULTS

To validate our method, we first conduct experiments with
simulated data, and then in the real world.

A. Simulation Experiments

Shown in Fig. 3, we conduct all the simulated ex-
periments using data collected with the PyBullet simula-
tor [37]. We use a simple green box object (Box) and

8 objects (Gelatin, RubiksCube, Spam, TunaCan,
Mustard, Bleach, Drill, and Sugar) from the YCB
object dataset [38], which covers diverse shapes, sizes, and
textures. The objects are placed on a flat surface with checker
patterns and pushed by a floating sphere robot, while a
static overhead camera takes pictures. As shown in Fig. 4,
24 pushing trajectories are adopted, where one is used to
optimize the world model and the rest for evaluating the
optimized model. To make sure that the pushes are diverse,
we pick 2 starting locations on each of the four sides of
the object, and push in three directions that are 20° apart at
each of these 8 locations toward the object. Similar pushes
are used for all the other objects where the starting locations
are adjusted based on the size of the objects. The trajectories
push the objects up to 12cm and 80°. All the trajectories
have T = 30 time steps with ¢ = 0.01s. We use the follow-
ing weights for optimization: [c1, ¢z, ¢3, ¢4, C5, Cg, C7,Cs, Co| =
[10, 500, 2000, 100, 100, 100, 4000, 500, 100]. These terms are
not carefully tuned and are set such that each term has a
similar order of magnitude at the start of optimization for
our experiments. The physical parameters we optimize for
include the mass, surface coefficient of friction, the center
of mass, and the rotational inertial. The center of mass is
initialized at the geometry center of the initial shape guess.
The rotational inertia is initialized by treating the object as
a box, whose dimensions are the bounding box of the initial
geometry guess. We assume that the rotational inertia only has
diagonal terms. For all experiments including simulations and
real-world experiments, the surface coefficient of friction is
initialized at 0.2 and the mass is initialized at 0.2 kg.
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We first evaluate whether our method can identify the shape
and physical parameters accurately, such that it generalizes
well to new physical interactions. We compare our method
against a recently proposed method that represents the world
jointly with Gaussian splats and physical particles and allows
it to perform both novel-view rendering and physics-based
trajectory predictions [25]. We refer to this method as PhysGS.
This method performs simulation with a particle-based sim-
ulator [39]. In the original paper, the physical parameters
of the particles are arbitrarily set, and virtual forces are
optimized to match the observations and predictions on the
training trajectory. To allow more accurate prediction for new
trajectories, we optimize the total mass and coefficient of
friction of the object particles with grid search using the partial
Chamfer distance between the observed object point cloud and
the predicted object particles on the last time frame in the
trajectory.

We report the quantitative results for dynamics parameter
estimation and novel trajectory predictions for all objects in the
simulation experiments in Table [, which are the average across
all objects. The dynamics parameter estimation error from
the training trajectory, the average pose error, the unilateral
Chamfer distance, and the translational velocity error at the
end of the testing trajectories are reported. We also show some
qualitative examples that are representative of the average
errors in Fig. 5. The final pose and velocity of the objects
are obtained by applying the control forces and integrating
forward in time. Our method identifies the dynamics parame-
ters accurately and shows low trajectory prediction errors. We
would like to point out in particular that the average rotation
error is heavily skewed by the TunaCan object since our
method currently uses the object surface point cloud to track
the object during stage 2 optimization, and cannot properly
differentiate the rotation of a cylindrical object. As a result,
the average rotation error is 28.0° for TunaCan, and we aim
to address this issue in future work. On the other hand, PhysGS
generalizes very poorly to the testing trajectories. While this
is partially because of the lack of proper dynamics parameters
and physics-based shape estimation, we also find that the
particle-based simulator is extremely sensitive to simulator
parameters and have poor physical fidelity, especially for
rigid objects. We also show an example of the initial and
optimized geometries of the Box object in Fig. 8 (left), which
demonstrate the ability of our method to adjust occluded
geometry based on the physics. Next, we also evaluate the
quality of the novel-view synthesis of our method. For each
of the testing objects, we evaluate the synthesized RGB images
from 10 novel viewpoints around the scene, and our method
achieves 0.00225 of mean squared error (MSE), 0.965 of
structural similarity index measure (SSIM) and 26.5 of peak
signal-to-noise ratio (PSNR). We also show some examples
of novel view synthesis of the Drill object in Fig. 6, which
matches the ground truth very well.

B. Physical Experiments

Shown in Fig. 3, we conduct physical experiments with a
URS5e robot arm equipped with an ATI Gamma F/T sensor

and a pusher with a semispherical end, and a static overhead
RealSense D435 RGB-D camera. We use similar pushing
trajectories to those for the simulation experiments, but only
use 6 trajectories with two different starting locations from
one side of the object. We then use one trajectory for training
and the rest for evaluation with 3 YCB objects: power drill
(Drill), sugar box (Sugar), and mustard bottle (Mustard).
We use a total of T' =48 time steps with ¢ = 0.03s. We use
the same optimization settings as the simulated experiments.

On average across all testing trajectories and testing objects,
our method achieves a mass identification error of 0.186 kg and
6.10 mm of unilateral chamfer distance between the observed
object point cloud and the predicted object at the last frame of
the trajectory. Note that we only reported the mass identifica-
tion error because the ground truth is very easy to measure
while measuring the surface friction requires a specialized
setup. Since we do not have access to the ground-truth object
poses and only have access to the raw observations, we report
the unilateral Chamfer distances between the observed object
point cloud and the predicted object geometry. The train
and test prediction results for three sample trajectories are
visualized in Fig. 7. Overall, the errors are comparable to
those from the simulated experiments. In addition, we show
the initial and optimized shape of the Sugar object in Fig. 8
on the right, where the initial shape is too thin and does not
contact the terrain below. Our algorithm modifies the occluded
geometry to satisfy the physics.

VI. LIMITATIONS

Our method assumes ground-truth object masks from the
scene, which might not always be possible even with advanced
foundational segmentation models. In addition, our method
does not consider more advanced appearance models, lighting
sources, and shadows. As a result, the rendered scenes could
have artifacts that do not match the real-world observations.
Currently, each optimization run is completed in under 15 mins
on a standard PC with an Intel i9-13900KF CPU, 64 GB of
RAM, and a GeForce RTX 4090 GPU. While this is not
ideal for online robotics applications, we intend to reduce
the runtime by using better initial guesses of geometry and
physical parameters from data-driven pre-trained models and
more efficient implementation. Finally, our method currently
struggles on objects whose rotation can not be properly
identified from a surface point cloud, such as a cylinder. We
aim to explore tracking methods that also leverages surface
textures for pose tracking in future work.

VII. CONCLUSION

We propose a novel algorithm to solve the task of identify-
ing objects’ physical properties as well as the geometry and
appearance, a crucial step in downstream robot manipulation
tasks. To the best of our knowledge, this is the first method
that allows the joint optimization of all of these properties. Our
method combines the merit of SaP object representation [12],
differentiable collision detection [40], and differentiable sim-
ulation [13]. Although our method has several limitations,
it opens doors to a rich spectrum of future research topics.



Some potential future directions include extending our method
to identify multi-body dynamic systems with additional con-
straints, more advanced appearance models, and physics-based
perception to correct for wrong object masks.
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